I'm a sound artist and am trying to recreate a DIY Hot Wire Microphone for a WW1 anniversary project.
The idea is to create a simple device that people can put together in a workshop setting (experimenting with technology inspired by WW1 tech) and then use it to make recordings of low frequency sounds.
I know there are other probably simpler ways of detecting low frequency sound but i want to stay true to the original and have the hot wire as part of the design
I wanted to use the Modern Devices Wind Sensor as a starting point. Can anyone give me advice on whether this can be done, how to proceed or how the MD Wind Sensor could be hacked?
Here's some more information on Hot Wire Microphone's:
"The Hot-Wire Microphone

The hot-wire microphone ... does not reproduce sound pressure variations electrically, but is more of a detector of sound and an indicator of its energy. Since the name does crop up from time to time, we'll describe it here for completeness. It is specifically used for low frequencies and for infrasonic signals. It was developed during the 1914-1918 war as a sound ranging device, for acoustic location of artillery to aid counterbattery fire. After the war, Tucker and Paris perfected the hot-wire microphone for infrasonic detection, publishing their results in 1921.
An example of a hot-wire microphone is shown at the right. It consists of a very fine platinum wire placed over the neck of a Helmholtz resonator and heated by a current passed through it. The wire is supported by a thin glass rod and a disc of mica. The disc is clamped between silver rings that make the contacts. When a sound wave of the resonant frequency arrives, air rushes in and out of the neck of the resonator at that frequency. This air flow cools the wire by forced convection, so its resistance decreases. The resistance decrease is easily detected by a Wheatstone bridge. The hot wire of a typical device is 6 μm in diameter, with a resistance of 350Ω and requiring about 30 mA to heat.
A Helmholtz resonator consists of a volume V and a neck of length L and cross-sectional area A. Its resonant frequency is given by the formula in the diagram, where c is the speed of sound. A 125-ml Florence flask makes a good Helmholtz resonator. I measured L = 5.5 cm and A = 1.54 cm2, which gave f = 256 Hz (the physicist's middle C). The actual resonance was an A, or 220 Hz, on the musician's scale, not far off. Without the resonator, the sensitivity of the hot-wire microphone is very low, so practical devices are all resonant. The microphone can be applied to frequencies as high as 512 Hz.
In addition to the DC change in resistance, it is also possible to detect AC variations in the hot-wire resistance. These variations are at twice the sound frequency, since the air blows alternately in and out, and the cooling does not depend on the direction of the air velocity. The hot-wire microphone is, accordingly, not applicable to speech or music. As its use in acoustic ranging indicates, it has a rather quick response. It is useful in a frequency range where other microphones are unresponsive."
Information borrowed from this website:
https://mysite.du.edu/~jcalvert/tech/microph.htm
Any help or advice on this would be great!